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I. INTRODUCTION

The purpose of this paper is to summarize work of Karr (1972a,

1972b, 1973) concerning a class of models of combat attrition

processes which, in the sense that attrition occurs instantaneously,

do not evolve over time (although discrete time dynamic processes

can be constructed from these essentially static models as we briefly

discuss). We refer the reader to Karr (1974) for a detailed dis-

cussion of a class of continuous time parameter stochastic processes

analogous to F. W. Lanchester's differential equation models.

Implementation of these static models in ccinpLt:erized combat simu-

lations is sometimt:, by means of an exponential approxinmation to an

equation for expected attrition which is binomial in form (hence the

title of the paper). We discuss the desirability and applicability of

such approximations, but only after first giving rigorous derivations,

from carefully and precisely stated probabilistic assumptions, of the

expected attritions in homogeneous and heterogeneous cases of point

fire combat (where a target must be detected before it can be attacked)

and for area fire directed at a homogeneous set of targets. The meaning

and appropriateness of the families of underlying assumptions may

then be discussed in a useful manner. In addition to exponential

approximations we consider some computational simplifications in the

heterogeneous point fire case and difficulties which occur when, as

happens in an iterative computerized simulation, random variables

are replaced in computations by their expectations.

The attrition equations we derive here are one-sided in the sense

of expressing attritio,1 to each force in terms of its initial strength,

the initial strength of the opposition, and parameters describing the

phybical situation. All attrition is suffered instantaneously. Two-

sided models can be constructed but only it a rather contrived manner.
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II. HOMOGENEOUS POINT FIRE MODEL

1. Basic Derivation

Consider a one-siced combat between two homogeneous forces, a

force of R indistinriuishble "targets" and a force of B indis-

tinguishable "searchers". We make the following 3su ptions col-

cerning this combat.

Al) At a fixed time all R talgets become vulnerable to

detection and attack by the B searchers;

A2) The probaility that the i
th searcher detects the jrh

target is d for all i = 1, ..., B and j = 1, ..., R. Each par-

ticular searcher detects different targets; independently of one

another;

A3) A searcher who makes no detections makes no attack. A

searcher who makes one or more detections chooses one target to

attack according to a uniform distribution over the set of targets

he has detected, independent of his detection process;

A4) The conditional probability that a searcher kills a target

given detection and attack is k , for all searchers and targets;

A5) No searcher may attack more than one target;

A6) Detection and attack processes of different searchers are

mutually independent.

We begin by computing the expected number of targets killed.

(1) PROPOSITION. Assume Al) - A6) are satisfied. Then if K denotes

the number of targets killed, we have

EK] = RI1- i - ri - (i - d)R])B}

-J



PROOF. By elementary conditional probability arguments,

P{searcher i kills target ji

= P{ searcher i detects and attacks and kills target ji

= PI searcher i kills target j Isearcher i detects and attacks

tarjet j. Pisearcher i detects and attacks target jI

= k P Isearcher i detects and attacks target j I
= k P { searcher i attacks target j searcher i detects target j}

. PIsearcher i detects target ij

= kd PI searcher i attacks target J searcher i detects target ji

By the Law of Total Probability,

PI searcher i attacks target j I searcher i detects target jj

R-1
= PI searcher i attacks target j and detects m other targets i
m=0 searcher i detects targdt Jl
R-I1

PI searcher i" attacks target j I searcher i detects

m=0 target j and exactly m other targets1
. P searcher i detects exactly m other targets i

searcher i detects target ji

by the identity PIA n BICI = PIAIB n CIPIBIC .

By assumption A3)

Pjsearcher i attacks target j I searcher i detec,:s target j

1and exactly m other targetsf- M + i

while by A2)

= Pisearcher i detects exactly m of the other R-1 taretsi

= <l) din (1 - d)R-l-m .

3
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Therefore

Pisearcher i attacks target j searcher i detects target ji

R-113-1 dm (l- d)R-n-1
M=O m + d

R-1 1 (R-l)! m R-m-1

M=O m + I M(--)

1 R-1 R: di+l(1 - d)R- (m+l)
mZ=O (m + 1)!(R - (m + 1))!

1 [-1-dR]

We thus obtain
k- R

Pisearcher i kills target j j=h [i - kl - d)R 1

which, as one expects, is independent of i and j . It follows by

the independence assumption A6) that

(2) Pitarget J is killedl

= 1 -1P target j is not killedl

B Isearcher i does not kill target j}

B
= 1 - El {P searcher i does not kil1 target j2

i=1

k
1 -(1 

d) Rl-(

4
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so that we finally have

ErK] = S P{target j is killedl
j=l

R k - B

= RIl -( -- Fl - (1 - d)R ])BI

as asserted.

The possibility that two or more searchers "kill" the same

target is not excluded.

2. Probabilfty Distribution of the Number of Kills

To compute the probability distribution of the number of targets

killed, which is needed to extend this static model to a discrete time

dynamic model, we take an alternative approach. It is not true, as

one might naively conjecture, that the number of targets killed is

binomially distributed with parameters R and q , where q is the

probability given on the right hand side o (2). The reason for this

is that even though searchers ooerate ',,dependently of one another,

different targets do not die independenzly of one another. Since each

searcher can attack at most one target. 'mnowing thdt e particular/
target was killed means that tome other target was not attacked by

the sea :cher that killed the fcrme- target and is hence less likely

to have been killed.

(3) PROPOSITION. For r, such that m < R and m"< B we have

(4) PIK ml /R T ( m + -_OB

I = ) r k-1 ) [( -R) + R- -

where

qR = k[1. - (l - d) R

5
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PROOF. To begin, the Law of Total Probability iffplies that

B
PIK = m = Z PIK = m, e "fatal" attacks are madei

A--m

B

= E PIK = mle "fatal" attacks are madel

PIA "fatal,, attacks are madel

where the sun is zero if the lower limit exceeds the upper. Here a

"fatal" attach is one which would kill the target attacked if no
other attacker attacked the same target. The fact that two or more

searchers may simultaneously attack and "kill" the same target means
that there may be more "fatal" attacks than targets killed.

Now by (2), since each searcher can kill at most one target,

Pjsearcher i makes a "ffatal" attacki

R
= E Pisearcher i kills target Ji

j=1

%k, [1 - (I )R ](5) j=, R

k -(-d)
R]

But by the independence assumption A6) different searchers make

"fatal" attacks independently of one another, so

Plexactly e "fatal" attacks are madel

F( ( q ) A ( i _ q ) B -.

Next, one notes that computing the conditional prcbability

PI K = mjexactly e "fatal" attacks are madel is equivalent to the

problem in combinatorial probability of finding the probability

that if I indistinguishable balls are placed into R indistin-

guishable boxes, independently and according to a unifor,

6



distribution, exactly R-m boxes remain empty. Tb.s is so in view

of the fact that

PIsearcher i kills target i lsearcher i makes a "fatalt attack} =

for all i and j , which follows at once from expressions above. The
occupancy probability is well-known and by Feller (1967, p. 60) is

(_ 1 (m - v) .Am V=0

The Proposition now follows by some elementary compuations.q

We may use Proposition (3) to construct a two-sided, discrete-
time, dynamic version of the unilateral. static attrition process.
studied in Proposition (1). We begin by .e)ting that we can use

hypotheses Al) - A6) to compute attrition to the B searchers if
roles were reversed and these were subject to detection, attack,
and destruction by the R targets. DCection and kill probabili-
ties aie in general a function of the side attacking, so if d', k"
are the parameters of the complementary process and L denotes the

number of searchers killed, then by Propositions,)

(6) P{L = n} = (-l)n)[(l-qB) + -- R

where

q B = k**[1 - (i - d') B ]I

One way to realize a two-sided attrition process from our one-
sided model is to suppose that each side is vulnerable to the
oppositionts initial strength, and that the two siaes independently
attrit each other accordlng to equations (4) and (6). This is

unsatisfying from a physical standpoint because it essentially
requires assuming that all detections and target choices are made

7
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and then all shots fired simultaneously.

This assumption does, however, lead to a dynamic model based

on the stated assumptions. The model is a discrete time stochastic

,'-ocess constructed on the assumption that at each time point an

interaction occurs as described in the preceding paragraph, in-

volving only those searchers and targets that have survived

previous interactions and which is otherwise independent of the

prior history of the process. Let P.,(5,R; k) be the probability

that exactly k targets survive a single interaction if there are

B searchers and R targets piresent; that is P1(B,R; k) is

PIK = R-kl as given by (4). Similarly, let P2(R,B; j) be PIL = B-jj

as given by (6). Let Tn denote the number of targetF surviving

after n interactions and Sn the corresponding number of

surviving searchers.

The preceding statements together imply the following result.

(7) THEOREM. Under the preceding hypotheses, the process ((S nATn ))nl

is a two-dimensional Markov process with state space 10,l,2,h.. x

{0,l,2,...j and transition matrix P given by

P((BR), (jk)) = PI(BR; j) • P2(BR; k)

3. Exponential Approximations

Use of the approximation

(8a) EK] R[l - exp( - [i - (I - d)R j ]

or the further approximation

(8b) E[K] - R[l - exp( - -[l - edR)]

is valid in the sense that

lim lean - (1 - a)nl
n-co, a 10

but largely unnecessary, especially within the context of computerized

8_ _ _ _ __ _ _ _



combat simulations. The correct expression given in (1) can be

computed as quickly (or perhaps even more quickly, depending on

how a specific computer performs exponentiations) as either (8a)

or (8b). Moreover, 4.he approximations may be rather poor for small

values of B or R, or moderately large values of k and d.

4. Use of Expectations as Inputs

Another problem involved in the use of this model in com-

puterized simulations is the replacement of random variables in

certain expressions by the expectations of those random variables.

To be more specific, suppose in th Markov process of Theorem (7)

we wanted to compute E[T 2], the expected number of targets surviving

two interactions. Let us assume for simplicity that only targets

can be killed. Then subject to the inrtial conditions of B

searchers and R taigets we have

:T 2 ] = z z k P2((BR); (jk))
jk

where P2 is the square of the matrix P defined in (7). One might

seek, however, especially in simulation models, to use instead the

"approximation"

ErT2 ] - R - E[T 1

- Er k [I-_ (1i- d)E[T1]])B 1

EfT1  -(.- l

with ':T ] computed using Propostion (1). What is done here is co

suppose there are exactly E[T1] targets surviving after the first

interaction, even though this number need not be an integer (which

doesn't matter too much, since the right-hand side of (1) makes

sense for any B and R) and to assess the expected number of kills

in the second interaction using E[T1 ] as the initial number of

targets.

9
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This technique is simply wrong; it is not an approximation

because we cannot estimate the error committed by its use, nor

give a limiting process leading to no error, even though, as the

example below indicates, that error may be rather small.

The following example gives an illustration.

EXAMPLE, Suppose that B - 1. Then (T ) is a Markov process

with transition matrix P given by

Ak[l- (l d d)R]  j = R - 1

P(R,j) =  1 - krl - (1 - d)R]  j = R

otherwise

Suppose

d .1

k= .5

T0=3

Restricted to 10,1,2,31 P is given by

1o 0 ]
.05 .95 0 0

P 0 .095 .915 0

0 .1405 .8595

By direct computation

1 0 0 0

2 .10 .90 0 0
= .005 .185 .81 0

0 .014 .246 .74

Thus

E[TI] = 2P(3,2) + 3P(3,3) = 2.85

10



and

EFT 2] p2(3,1) + 2P 2(3,2) + 3P 2(3,3) = 2.72

If we try to compute E[T 2] as

ErT d)ErT!])E-T]( EFTI i -(I - d

we obtain 2.70 which is near to the correct value 2.72 in absolute

terms and roughly one percent different in relative terms.

Hence in this case the error is small, but the error grows

with n and cannot, so far as we have been able to investigate,

be estimated or bounded a priori. Thus there remains the possibility

of substantial error if (1) is used as an assessment equation in a

dynamic combat model.

r
/
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III. HETEROGENEOUS POINT FIRE MOREL

1. The Basic Model

In this section we extend the model of Section II to the case

where there are several types of targets and searchers, with detec-

tion and kill probabilities dependent on the type of target and type

of searcher. The physics of the process, however, remains unchanged.

Let us assume that there are M types of searchers, Bi searchers
of type i (i = 1, ..., M), N types of targets, and R. targets of

type j (j = 1, ..., N). We will impose the following hypotheses:

Al) At a fixed time all targets become vulnerable to detection
and attack;

A2) The probability that a given, fixed searcher of type i
detects a given, fixed target of type j is d...

A3) Of the targets (of al, kinds) detected by a given searcher,

he chooses one to fire upon according to a uniform distribution.

A4) Given that he detects and fires upon a target of type j,
a given searcher of type i destroys that target with probability kij ;

A5) A given searcher detects different targets independently of
one another;

A6) No searcher may fire more than once;

A7) The detection and firing processes of all the searchers are

mutually independent.

We wish to compute, under these assumptions, the expected number

of targets of each type destroyed. First, we give an analytical

solution. Let

B = B1 + ... + BM

1Preceding page blank



denote the total number of searchers aud

R = R1 + ... + RN

the totlal number of targets. Let K be the number of type j targets

destroyed.

(9) THEOREM. tinder the assumptions Al) - A7) the expected

number of type j targets destroyed is given by
M dkiPiJ)]Bi)

(10) E R ) -1. 1

where
R.- R.Rl 1~ -1 R J +1

r 1 0 rj 1 =O r=0 r j+l=0 NO

1 R ldr" R.-l-r.1 R rl \r .!1 3 - di,) J
I + E rp \rj/

p=l

x (Rq)d - diq)

k<q<N r )

q.4j q

PROOF. To begin, let us define the following events

K ij(k,. ) - th target of type i is killed by kth searcher of

type il

A.j(k,L) = IL target of type j is attacked by kth searcherof Cype 4 1

D. L(k.,) = [th target oi type j is '-tected by kth searcher

of type it

for i <M, j <N k< Bi and i <R .

14



By A2) and A4). PIKij(k,L)l is independent of k and .

Moreover, A7) implies that

P Itth target of type j is killedt

M B.
n 1 - f ri - PIKij(I) 11i=l

We now need to find the probabilities P1Ki (k,A)j. To begin,
since

Kij(k, t) c Aij(k,A) c D ij(k,e)

we have

PJKij(k,A) = PIK ij(k,L)IA ij(k,e)l • PIAij(k,.)l

= kij • PAAij.(k,()

= kij PfAij(k,A)IDij(k, )\PIDij(k,k)l

= ki PIA ij(k,L)IDij(k,L)1dij 

We may write the remaining conditional probability, which is

independent of k and L for fixed i and j , as

PI Aij (k,A)D Dij (ke I)

= z - . :-. * - -or.- 0r O r -0 r F r=
• _- j.&!-

PIA i~i(k,A)ID ij (k,A) i'! G ij(rl ... "' N; ,)

X PIGij-(rl ..., rN; k,) ,

f :h
where G. (rl, ... , rN; k,A) is the event "the kth searcher of type
i detects, in addition to the At target of type j, r. other type j
targets and rp targets of type p $ j,. whose probability is independent

of k and A . By A3)
15



PIA. (k,)IGJ(r ... rN k, = 1 N
1j' iji ') N ' N'

1+ E r
p=l P

while by A5)

r. - R. -l-r.

/R rq R-rq

x R q ) q (1 - d. R q)
l-,q-!(r)d iq qq

qj

which, as expected, is independent of k and I when i and j

are fixed.

Collecting terms now yields the asserted result.

Instead of the assumptions Al) and A3) concerning the physics

of the process of detection and attack, we could assume that targets

become vulnerable to a given searcher sequentially in a randomly

chosen order, with all R! orders equally probable, that each target

is either detected or not and that the first detected target is fired

upon. This process occurs once for each searcher independently of the

processes corresponding to other searchers, but no targets are destroyed

until the end of the entire process. This interpretation is useful in

considering allocation of fire problems.

2. Pire Allocation

It should be noted that this model has no provision for searcher

determination of whether a given detected target is to be attacked or

not. In reality a searcher might be tempted to pass over low value

targets in the hope of detecting a high value target. Or, if all

targets are vulnerable simultaneously, a given searcher would not

16
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choose among them uniformly, but would instead choose the target whose

destruction entails the largest reward to him.

While the model makes no provision for such a choice mechanism,

it could be incorporated in the ".imultaneously vulnerable" inter-

pretation. Referring to the proof of (9), we see that the uniform

target choice is manifeste solely in the conditional probability

PA ij (k)1G.ij.(rl ..., rN; ) = ;K,)N

I+ Z r
p=l P

Hence a different rule for target choice can be incorporated

simply by changing the form of this conditional probability, subject

to some obvious regulariry conditions,

EXAMPLE. Suppose the value to a typE i searcher of destroying

a type j target is uij. Then

v.. = k..u,.1v 13J1J

is the expected return from an attack upnn type j target. rhe rule

"Of the targets detected fire at one whose destiaction is of maximal

value" leads to

[ .PJA ij (k,I)IG ij (rl, ... ) rN; k,0)1

1 ifv.. > v. for all m V j such that r > 0
1 + r IJ - im m

- 3

0 otherwise.

Here we have assumed for simplicity that vij Vim whenever j / m.

Other examples can be described similarly.

3. Further Computations

To i;nplement (10) as the attrition equation in a computerized

combat model would be laborious, and lead to a cumbersome result.

17I _______ _____



Let us consider the difficulties more carefully beginning with

some simple cases. First suppose that

N=3 S

and

R 1 = R 2 = R 3  1

In this case, (11) yields

1 l- l - d2
p(i, ) = + Z i + ULJ d 2 ( i )

L=0 m=O "

1 (1 - )d

= 1[(l - di2 )(l - d i3)]

+ 2 - di 2 )di 3 + di2 (1 - di)]

1.2 id32 di 3]

1 1

= i -~ (di 2 + di) + .(d2 d3)

which doesn't look too ugly; analogous expressions for p(i,2) and

p(i,3) clearly exist. If

N=4

and

R 1 = 2 = 3 = R=

we have

p(il) = 1- . (di2 + di3 + di4)

+1 (di2 di3 + di2 di4 +d i3 di4 )

dd d
4 i2 i 3  i 4

18

_ I



-- - - 7 T

Thu general pattern is by now evident; we summarize it in the
following result, whose inductive proof we omit.

(12) PROPOSITION. For any N , if

R1 = R2 = R 3  = ... = =

then for 1 < i < M and 1 < j < N,

p(ij) = + Z - X I Xd.3.1-d.. ..... d
m12  2 1 i2>i1 in in-i ,2 i'im

il1 J i 20J i m J

Proposition (12) is not so useless as it first appears: in a
computer implementation one could assume that there is only one
target of each typo--even though scme targets have the same prob-
bilities of detection and kill given detection--then carry out the
attrition calculation using (10) and (12). If targets were grouped
into classes of indistinguishable (except by artificial notation)
objects, attrition AR. to objects in the kth class would then be
given by

M B.
(13) ARk = F. - r - d3ij kijp(i)]

thIWwhere C, is the set of indices j such that the j object b;elongs

to the k class. For fixed i and k , d.. and k.. are indepen-
dent of j c Ck.

4. Approximations and Simplifications

While (13) could be implemented on a computer, its use might
involve long and time-consuming computations, especially if R were
of the magnitude of the number of soldiers in a moderate-sized land
battle. Hence it is worthwhile to seek simplified versions of (10),
several of which we now proceed to consider.

19
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The following result, which aids in developing simplified versions

of (10), shows that the complicated form of (10) arises from having

more than one type of target, rather than from having more than one

type of searcher.

(14) PROPOSITION. If N = 1, then

(15) ErK] = R l - 1 - fl " 
- (1 - di)R)

where subscripts i denote the type of searcher.

PROOF. From (11) we have for each i

R-1 1 R- l\dr(I dr R-l-r
p(i) = p(i~l) = r E0 1 + rd

which, as indicated in the proof of Proposition (1), is equal to

171(1- (1 - di)D)

yielding (15).

We next discuss three simplified versions of (10) for the case

N > 1. The notation AR. = EFKj] is used hereafter.

a. Successive Application of All Searchers to Each Type of

Target. If there were only type j targets then by (15) the expected

number of such targets destroyed would be

k.
(16) ARj = R.[ - n 1 - ~~2l- (1 - di.) RJ)]

One means of attrition assessment would calculate each Adby (16),

but this method clearly gives an advantage to searchers which is

unwarranted in terms of assumption Al). In effect, this method
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allows each searcher one shot at each type of target, rather than

one shot altogether.

b. Calculation With Weighted Probabilities. For each i , the

quantity

di- R : d i j j

represents a detection probability for tipe i searchers which is
averaged with respect to the numbers of targets present, while

z-- N: E lk_ R.

SRj-1 ).J J

is a similarly averaged conditional probability of kill given detection.

We could then approximate the original attrition process by one

with R targets of a single type and for each i Bi searchers of
type i with detection and kill probabilities Ui and Ti, respectively.
Using (15), attrition to these R targets would be

AR=R - -
ARR ~i=l( .. l ( ~R)

Against type j targets would then be assessed the traction R./R of
( this attrition AR , so that

M 
-J Bi(17) AR. = R.( 3. [l(- 4 - (1-lj)i3 J3 i A

In (17) it was unnecessary to use the averaged cond:tinnal

probabilities of kill given detection and attack, and we could
as well (and more accurately) have written

(17') AR.= R. di)R

It is possible, using one further averaging step, to use the

homogeneous equation directly. The numbers
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B M T
iL=l

and
1M

k=- E' BiZ.
B Eii=l

are, respectively, probabilities of detection and kill given detection

averaged with respect to both targets and searchers.

We may approximate the original attrition process by an attrition

process with R targets of a single type, B searchers of a single

type, an5 parameters d,k as computed just above. The exact attri-

tion in such a process 4s given by

A R --R -l ( [1 -_ (1 - .))B

Using the same attrition apportionment as in (17), these three

equations yield the following values for the expected attrition to

type j targets

(18) AR. = R 1 - (1 - 1 - ( - d)R))

c. Prior Apportionment of Searchers. We Anight also model the

attrition process as a number of smaller engagements by, prior to

attrition assessment, dividing the searchers among different types

of targets on the basis of relative numbers of targets present and

vulnerable. That is, type j targets would be vulnerable to only

R.
B(ij) = B_ • I

.L R

type i searchers, rather than to all Bi type i searchers. One can

interpret this as assigning to each searcher one and only one type

of target.
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Using (15), we see that attrition to type j targets is given in

this case by

(1 ) ~ l M k R (1i R
(19- AR. = R. 1 1 - ]. 1i- dii)R

But there are other methods of prior searcher allocation which

are more closely related to our model and to methods developed by

L. B. Anderson (1973. The point is to compute explicitly the

searcher allocation for a .tyj-icat1, target set (we leave the term

purposely vague) and to use this allocation to allocate searchers

in each attrition computation, as described below.

Suppose that t. is the proportion of a "typical" target set

which are type j targets and that at. is the fraction of the shots
fired by a type i searcher which are directed at type j targets

when the target set is "typical". If .1e put

ta.
(20) ai t

then the fraction of shots fired by a type i searcher which are

aimed at typu j targets when the target set consists of Rj targets

of type j (j = 1, ..., N) is given by

MijR j

k

and we could then define

B(i,j) = B i  13 kRk

k

to be used in (19).

23



An interesting question at this point is, Can the a .be derived

from oth, given quantities using the assumptions set forth above?

To begin, we note that the object is to derive a distribution of the

fire of each searcher. For the model described by Al) - A7) we have

the following result,

(21) PROPOSITION. For each i and j , the conditional probabi-

lity that a fixed type i searcher attacks some type j target, given

that the searcher makes an attack, is

(22) 
RjdiJP(iRJ

)

N Rk
1 - H (I - dik)

k=l

with p(i,j) defined by (11).

PROOF. In the proof of (9) we showed that the probability that the

kth searcher of type i attacks the Ath target of type j is given by

PfA ij(k,.)1 = dijp(ij)

The probability that the kth type i searcher makes an attack is

one minus the probability that he fails to make a detection; by A5)

this latter probability is
!

N Rk
l( - d ik)

k=l

By elementary conditional probability arguments (22) is now

obtained.

Suppose now that a "typical" target set consists of targets

of type j, j i, ... , N. We can then define

t

_E R

k=l
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and efine, through (22),

t ~R td. pt(i~j)
a..13 N R t

1- 1 (1 - dik) k
k=l

with pt(ij) computed by (11) with the Rk there replaced by R k Then,

to compute attrition in an engagement with arbitrary numbers RI, ... ,

RN of targets, we would compute the Clk by (20) and apply equation

(19). In use, this procedure would require only one computation of

p(i,j)'s--that for the "typical" target set.

The rationale behind this procedure is that in a statistical sensc

of the long run, the probability that a given type of target is fired

upon, given that there is a shot fired, is the same as the fraction of

shots fired at type j targets if the actrition process were carried

out experimentally a large number of times.

5. A Multiple Shot Model

The preceding discussion shows that the complexity of (10) and

(11) results almost entirely from the Assumption A3) that each

searcher fires at most one shot. If we replace A3) by

A3)' Each searcher has sufficient firing capability to fire

once and only once at each target he detects,

then we have the following result.

(23) PROPOSITION. Under Assumptions Al), A2), A3)', A4) - A7),

(24) AR. = Rj 1l- r (i- dijkij)

for each j

We omit the simple proof. The equation (24) is a reasonable

and more easily computable alternative to (10), especially for

modeling situations in which the one-shot hypothesis A3) seems

unrealistic. 25



6. Exponential Approximations

As in the homogeneous case various exponential approximations

to the attrition equations of this section are possible, some of

which we give below. Corresponding to (16) are

AR - [1 - exp il Bi k. j 1 -(1- d j)

and

I /xM e 4-d..R. ]\1
R. 1 - exp 1 Z Bk 1 - e1j i=l

Approximations of (17) are

1 R
AR. - exp ( El Bil-(1-

and
M R))]

ARj .R4 - exp( E B9Z~~. -.. . - e - R Bi=-

Equation (18) is approximated as

AR. - Rj 1 - exp -l- i - (1 - d)R]

/R

and

4.- R - 1 - exp - [1-ed

Finally, two approximations to (19) are

ARj R. 1 exp E B k. Bi [l- (l dij]

Ri=1 l

and

r ' 1 1 -d. .R.'
AR1 - Rj - eXp(- E Bkj 1 e

26



Such relations as these should be used with great care, if at

all, since they are three- and four-tier approximations to the

correct computation given by (10) and (11).
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IV. AREA FIRE MODEL

1. The Basic Model

We give in this section an axiomatic treatment of a classical
area fire problem, following the format of the preceding sections.

Karr (1972b) is the basis for this presentation. In our first model
here both defenders and incoming shots are uniformly distributed over
a disk in the plane; it is shown that under carefully stated assumptions

an independence assertion usually thought to be true fails and we
denote some attention to the consequences. The second model is an

elementary Markov process analysis of a situation in which the
defenders regroup after every shot so as to defend an area propor-
tional to their numerical strength, the constant of proportionality

being fixed.

For each r > 0 let Sr be the disk in R2 with center 0 and
radiuis r ; we denote the unit disk S1 by A. Defenders (or
targets) located in A are attacked according to the following
assumptions.

Al) Each incoming shot has a circular area of (theoretical - see
I- A3) below) lethality whose radius is uniformly distibuted on the

interval rrl, r2]) where rl, r2 are numbers with

*0 < r1 < r2 < 1

with the understanding that if rI = r2 the radius is rI almost surely.

A2) The center of the area of lethality of each shot is uniformly

distributed on S1_ and is independent of the radius of lethality.
l-2

' o This means that the attacker is able to (and does) aim his shots

to the extent that no lethal area falls outside A , but that centers

are otherwise uniformly distributed. Note also that no point of A is
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a priori immune, although points near the boundary of A appear

safer.

A3) There is a measurable function g from A x Sir2 x ro, r2]

into ro, 1] with the interpretation that g(x,u,r) is the prob-

radius r centered about u e S .

l-r 2
A4) Each defender's position is uniformly distributed on A and

is independent of all incoming shots.

The purpose of the function g is to take account of the effect

of terrain, shelters, etc., in decreasing the lethality of a shot.

Thus one may suppose that the lethality of Al) is hypothetical in

the sense of representing lethality on a treeless plain, so that

g has the effect of transforming a "potential" lethality which is

a property only of the weapon into an "actual" lethality which

depends on both the weapon and the physical situation.

Some examples are helpful at this point.

EXAMPLES. 1) the function

1 for Ix-ul S r
(25) g(x,u,r) =

0 otherwise,

where denotes Euclidean distance on R2, is the classical

"cookie cutter" damage function: anything in the lethal range of

the shot is annihilated with probability one and everything not in

the lethal range is unaffected.

2) Supposc the subset T of A is sheltered in the sense that

no defender in the shelter can be killed except by a direct hit on

the shelter. We would then have for x e T

=Iur l if u e T and Ix-ul : r
g(x,u,r)=

(0 otherwise ,

while for x T. g(x) could be defined by (1) or by some other

recipe. 30
30J



Note that A4) does not require that positions of different

defenders be independent of one another, but only that each position

be uniformly distributed on A . The independence assumption will

be imposed in the second model.

Let us consider the probability p(l) that a single defender

with position X survives a single shot with (center, radius)

pair (C,R). Writing S for S 1r, we have
12

(26) 1 - p(1) = E rg(XCR)] =

r2

S[IAI IsJ . (r 2 - r 1 )11f dx f du f dr g(x,u,r)

A S r

2
where IFI is the two-dimensional Lebesgue measure (= area) of F c R

2
Of course, IAI = 7 and ISI =-.(1-. r2) , but we leave these

quantities unevaluated for the sake of easier interpretation. It

should be noted that throughout this section u and x are two-

dimensional variables, while r is one-dimensional.

(27) PROPOSITION. If R is any nonnegative random variable

bounded above by r2, if

/ PICe Ir

and if g is of the form (25), then

(28) 1 - p(1) JAI

PROOF. Let F be the distribution of R and G that of

C; then with the assumption on g , and an application of Fubini's

Theorem, we have
r2

1 - p(l) f F(dr) fG(du) f dx Iror](Ix-uI)
JA 0- 3 S A
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(here IB is the indicator function of the set B: B) = 1 if

y e B and 0 otherwise)

r 2
1  f F(dr) fG(du) 1x e A : ux- r

0 S

But, since for u e S and r < u, Sr(u) c

x e A :ix - ul< rj TTr 2

so that the last expression is equal to

1 2 2  E[-.f2 F(dr) T r f G(du) =

IAI 0 S IAI

When R has the distribution specified in Al),

r22r 2

E R2 ] =2 I r dr
-r 1

1r12 2= (r2  + rlr + rl)

As a special case of (27) we may take

G(OO}) = 1

and notice that the probability the defender survives a single shot

whose center is fixed at the origin is the same as the probability

that he survives a shot with the same radius of lethality distri-

bution whose center is uniformly distributed on S

Let p(n) be the probability that a single defender survives

n independent and identically distributed shots. Then it is

not true that
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(29) p(2) =p(1) 2

since the events

El = Idefender survives first shotj

and

E2 = Idefender survives second shot$

are not independent, but only cor.ditionally independent given the

defender's position X

Thus

p(2) = PIE 1 n E21

= E rPjE1 n E2 1x1

= Er[PEllX } • PIE 2 1XI]

It follows from (26) and (27) that for i = 1, 2

PIEilXj = h(X)

where
r 2

h(x) =(ISI * (r 2 - r 1))7 f du fdr I~r ,)(Ix "1L)
S r

Isl1 lu C S Ix - ul > r211

-+x-u rdu'
2 -rl rj.<Ix-ul<r 2

ue.S

Note that h(x) is the probability that a defender at x e A survives

a shot which is uniformly distributed on S It follows that

(30) p(2) = AI-' h(x)2 dx
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and, by induction, that

(31)pn) = IAI-' h(x) n dx

A

The probability q(n) that a single defender fails to survive n

independent and identically distributed shots is given by

q(n) = - p(n)

-lf n
=1- IAI- h(x)n dx

A

= IAI- 'fl - h (X)n] dx
A

which is not equal, in general, to

1 - (l - q(l))n = 1 - (IAI-'fh(x) dx)n

A

The expected attrition to m defenders whose distributions satisfy

A4) is then given by

(32) m q(n) miAll f (1 - h(x) n) dx = A(m, n)

A

Let us again point out that A4) is satisfied and hence (32) is valid,
without assuming that defenders' positions be independent of one

another. For example, if a single defender chooses a uniformly dis-

tributed position and other defenders position themselves at the same

distance from 0 in such a way as to make all angular distances

between adjacent defenders equal, then A4) is satisfied. Or all

defenders may be placed at a single point which is uniformly distri-

buted on A , so a defender seeking to minimize his expected attrition

gains nothing by dispersing his personnel, in a situation modeled by

Al) - A4). The same would not be true, however, of a defender who

tries to minimize the probability of annihilation of all his personnel

(provided his forces are more than one).
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2. Edge Effects

As will be discussed in considerable detail below, the difficulties
in the failure of (29) arise in the fact that h is not constant ove

all of A : clearly h(O) < 1, while h(x) = 1 for % in the boundary

Fr(A) of A . The reason h is not constant is because shots are aimed
so that no lethal area ever falls outside A ) makiig it less likely
that a shot whose center is uniformly distributed on S will kill a

defender whose position is close to Fr(A). This is an edge effect.

It will be proved in (38) that h is constant over most of A
we will then consider the effect of neglecting the set where h h(O).

Another alternative which makes h constant over all of A would be

to make shot centers uniformly distributed on S l+r2 but if this is

done then (28) is no longer true. The difficulties arise in "edge
effects" near the boundary of A . One is tempted to conclude that

edge effects can be neglected if r2 is small; tc a certain extent this

is so, or that these edge effects are a result of the formulation of

the model rather than the underlying physical process. We believe the

second conclusion is unjustified. In physical models, from fluid dyna-

mics to-statistical mechanics, of finite systems it is precisely the

boundary behaviors which must be considered most carefully and which
make the theories valuable; we feel the same is true here.

3. Repositioning in the Same Area

We now proceed, as promised above, to a detailed analysis of the

failure of (29) and one way of rectifying this difficulty (if one
considers it to be a difficulty) by imposing an additional (but not

very plausible) assumption.

Suppose we add to Al) - A4) the following hypothesis:

AS) Shots are made one at a time and between each pair of shots

every defender repositions himself according to a uniform distribution

on A , independent of the past positions of all defenders and of the

entire process of incoming shots.
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7-1~

We begin by considering the survival probabilities for a single
defender; suppose there are n shots that his positions (provided

he lives long enough to occupy them) are X1, ...' Xn and that (C1 , RI),
(. (n, Rn) are the (center, radius) pairs of the incoming shots.

Continue to assume g is of the form (25). Then for k = 1, ... , n
the probability of surviving the first k shots is

k

k

-j=l PX RC) ~ 1 )

Hence under A5) and the assumptions of Proposition (27)

n

(33) p(n) = ( -ETTR2 ) , n = l, 2,

where R is a random variable with the same distribution as RI, ..., Rn-
Prom (33) it is evident that

/-ErT R2]n
(34) q(n) =N 1 - 12 I  ]N

- 1 - (1 - q(l))n

We emphasize that (34) is valid only under the restrictive and rather
implausible hypothesis AS) and that A5) is meaningless in a situation
where n shots are fired simultaneously and independently from differ-

ent weapons.

For small values of r2 and large values of n , one may make the

approximation

(3 ) p(n) - exp (- nEErR 2 /IAI)

although neither its desirability nor its necessity is clear, since,
after all, exact expressions such a, (33) are available. If (35) is

employed, the expected attrition A(m, n) to m defenders by n shots
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is approximately

A(m,n) m(l - exp ( - nE(TR2 ]/IAI))

the true value is

(36) A(m, n)=ral- -= Al

It seems reasonable to define the quantity nE~rR z] as the (expected)
"antipersonnel potentia,, of n shots. It is the word "potential"

which is crucial: this is the expected lethal area of n shots with

the same radius of lethality distribution whose areas of lethality
do not intersect (which is the best situation the attacker can hope for).

Continuing to assume Al) - A5) and the hypothesis of (27), we see
that the probability p(nl, ..., n.) that a single defender survives n1

independent shots from a type 1 weapon with expected area of lethality

E[nR2], n,. independent shots from a type 2 weapon that are independen:
of the shots from the type 1 weapon and have expected area of lethality

E[rR2], and so on, is

n.
21

(37) p(nl, ... , nj)= =l 1 IAI,

We may, provided n., n all be large, approximate the corresponding

kill probability q = 1 - p by

q(nl, ... , n)= -Pnl ... n.)

1- e _ npE[n] •
( JIi=1l

Again, it may be reasonable to interpret Z niE[TR2) as antipersonnel

potential. It should be noted, however, that no such scalar quantity

appears in the exact equations (34) and (37), let alone the equations

derived without the use of A5).

3;
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4. The Effect of Edge Effects

An alternative analysis of the failure of (29) is based on the

following result. We assume until further notice that r < 1/2.

(38) PROPOSITION. If lxI < 1 - 2r2 , then

h~x) = h(O)

1 [(1- 2r 2 )+ 2/3 (r 2 + rr + r2 r (r + r)]

(1 - r2) 2(2 1 2 + 1  2  1

PROOF. For jxj < 1 - 2r2 we have, from the computation of h given

previously,

h(x,) = [11u C S : x - ul > r H.

IS f
+r 2 -r 1  r f<j (l x- u - r du

1Jx-u I :r 2
ucS

-1[(ISI r 2rr)

isI
+ r 2  rl fu (Ix- ul - rl) du]

2 1 x-ul r, j,i. - J2
lul<:l-r2

In the second term, make the change of variable y = u - x (y is two-

dimensional) to obtain

Is I( 2 - r <l < (jyj r )dy

Ix+yl_<l-r,,
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For lyl < r2 and IxI < 1- 2r2,

Ix + yI <: jxI + IAy < 1- r2,

so the second restriction on the domain of integration is irrelevant.

Hence f Dr lxI < 1 - 2r2 ,
h(x) = h(O) = (1 r (i - r2 2IsL~l -2)

ISILIT

+ - I (lyl - rl) dyj
+r1 <l y_<r2

22 [ r ~ f (ly _ rl) dy ,
n-r 2  L ,( 2'2 r 2 -r rl ± -I"[(1 r2) r<l ylr 2

We may evaluate the integral changing to polar coordinates y - (r cos q,

r sin 0), where r = y and = tan- (y2/yl), with the result

f f (Iy - rl) dy

rI 1<lyl<r 2

2TT

r 2 -r I  f (r - r1
) r dr dq

r 1<r<r 2  0

2TT f (r2 - r
1r) dr

r2 - 1 r <rr

2-.-- 2

= 1n[/3(r 3 _ r3  - r - 1r- rI  L 2  l) - --(r2 - 1)

which completes the proof.
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COROLLARY.

x : h(x) $ h(O)1i = 4T(r2 -r)

PROOF. This requires only noting that h(x) is strictly greater than

h(O) if lxi > 1 - 2r2 and a simple computation.

Since

n

(1- ())n f h(x) dx')IA I A/

while

q(n) = ih(x)n dx

IA I A

we see that the failure of q(n) to equal 1 - (1 - q(l))n under Al) -

A4) and the hypotheses of (27) is due to the inequality

n

1 fh(x) dx (1fh(x) dx
I A A

We know that if G is a probability measure and f c is a

constant fumction then

ffn dG = (ff dG)n = cn

for all n > 0.

Since we showed in Proposition (38) that h is constant except

over a subset of A of small Legesgue measure (provided r2 is small)

it seems plausible that (.L r hn should serve as an approximation
to.1 fhn n This, in fact, is so in two senses, which we note next.

IA I A
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(39) PROPOSITION. For any fixed n
n

lim h(x)n dx- 1 fh(x) dx) 0

2-oI I A IA

and for any fixed r2 > 0,

lrn If h(f dx ~(i ~)d) =0
n.oAAfh x) o

n I A A

We omit the proof.

COROLLARY. For each fixed n > 1 and each 6 e ro, 1),

fh(x)n dx = h(O)n + o ~r , r -0

IAI A

and
n

( f h(x) dx~ h(O)nl + cr)r -.0

/A IAr2) 2

The qualitative content of the corollary is that for fixed n and

small r2 the error in approximating either q(n) 
c- 1 - (1 - q(l))n by

-.4 1 - h(0)n , and hence the error in the approximation

q(n) - ( )) n

is (roughly) proportional to r2; estimates of the constant 
of -.opor-

tionality may be made if required.

Let f(x) = 1 - h(x), so that f(x) is the probability that a defender

at x e A is killed by a single shot whose center is 
uniformly distri-

buted on Sl1r and is independent of the radius of lethality which 
is

uniformly distributed on [rl, r2]. Then the approximation
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q(n) - 1 - h(O)n

may be written as

q(n) - 1 - (I - f(0)) n

Since both sides here go to zero as n - we may make the further

approximation

q(n) - 1 - exp ( - nf(O))

which is valid for small r2 and large n

5. Repositioning With Fixed Density

We will next discuss a generalization of the model based on Al) -

Aa) which treats incoming shots as occurring one after another and

reqAres that the defender reposition his forces after each shot in

such a way as to maintain a fixei density of forces. Specifically,

we will assume Al) - A4), that there are initially m defenders, and

the following additional hypotheses:

A6) Let p = m/IAI. If after a given shot there are k(l < k < m)

surviving defenders, each of those k defenders positions himself on

the disk St(k) with radius r(k) = (k/Or)
2 = (k/m)2 and center 0

independent of the repositionings of the (k - 1) other survivors, of che

past positions of all defenders and of the entire process of incoming

shots.

A7) Initial positions of the m defenders are independent of one

another and of all incoming shots.

Hence the density of the repositioned defenders (over the smaller

set S r(k) to which they have retreated) is k/nr(k)
2 = p so the density

of defenders (relative to the set over which they are uniformly dis-

%ributed--not to A !) remains constant.

For simplicity we further assume that g is of the form (25),

that all shots have lethality radius r almost surely, that the

attacker is unaware of the pullback of defender personnel and
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continues to fire shots whose centers are uniformly distributed on

Slr, and that r < 1/m. Let Tn be the number of defenders remaining
alive after the nth shot: The important result concerning the sto-

chastic process (Tn)n>l is the following.

(40) THEOREM. Under Al) - A4), A6), A7). and the additional

assumptions stated in the preceding paragraphs, T = Tn)n> is a

Markov process with state space E - 10, 1, ... , ml, initial distri-

bution CL given by

2k im-k
(41) a(k) =_PIT, = k (m)( -r')(,,) , k=O0, *.,m

and transition matrix P given by

(42a) P(0, j)= 6(0, j) j = 0, 1, ..., m

while for 1 < i < m

l-r
(42b) '~2 2 u(l - f/\ ..()) i(u)'- du

r) 0 if j -0, ... i
-- P(i, j)=

0 if j =i+i, ... , m

where Si r (0, u)1 is the disk with radius r and center (0, u) and

S . s )
3 .r'(i) 2

and finally

(42c) P(m, j)= (j), j = 0 ..., m

PROOF. As in the derivation of (31) one must guard against unwarranted

independence assumptions. That (42a)hclds is clear from physical

interpretation.

If X1, ...' Xm1 are the positions of the defenders prior to the

first shot and C, the position of the centoi of the first shot then
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P I = ~k )k , sjCj*. .. , Xk S r(Cl)

Xk+l C Sr(Cl), ... ) Xm 6 Sr(C1)I

(because defenders are indistinguishable)

--(D) )EIx 1  s(C), ... , X C Sr(C

Xk+l C Sr(C), ... , X e Sr(C1)ICul ]

R f dy P{XI k S(Y)} P{X +I S(Y) m- k

(because XI, ..., XM are independent of one another and of C1 )
k m-k

(m ( Tr 2) (T2)

proving (41) and (42c). A similarly pleasant simplification in the

proof of (42b)is not possible because a shot uniformly distributed

on SIlr does not have a probability of killing a defender uniformly

distributed on Sr(i)' which, given the center of the shot, is con-

stant, as was true above, except for i = m.

Suppose CI, C2, ..., Ck+i are the centers of the first k+l shots

and let XI , ... , XT be the positions assumed by the Tk defenders

k
surviving the first k shots. Since by A6) XI, ..., XTk are

independent and identically uniformly distributed on Sr(Tk), given

Tk, and are independent of C1 , ... , Ck and of all previous defender

positions, it follows that X1, XT are conditionally independent
k

of TI, ... , Tk i given Tk, and hence that the Markov property 
holds:

PjTk+l = JTI, ' k= PSTk+l Jl

44
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It remains to prove that

PITk+l - jITk- P(Tk' j )

with P defined by (42); we may and do assume that Tk> 1. Noting

that PITk+l = JITk1 is the conditional probability given Tk that

exactly Tk j of the points XI, ..., k are within the disk S r(Ck+l)

and again using the indistinguishability of the defenders, we obtain

PITk+l = iI~k

= (Tk ) PIX 1 , ... , XI Sr(Ck+l), Xj+L . k e Sr(Ck+l)Tkl

C1 r

j Isi ri P X
• Sl r

By rotational symmetry of a uniform distribution on a disk,

PIX 1 C Sr(y)l depends only on y2 and since 1Ck+l is distributed on

C0, 1 - r] with density (1 - r)-2 2u the last expression becomes

1-r Tk
(Tk l 1 2udulX .S "1 +

'i, (1- r)1 0

Since X is uniformly distributed on Sr(i) , we have

ISr(,-) n Sr[(O, u) I
PIX1 e Srr(o, u)]l- f (u) = r-

* 1 I~r(i) 1

which completes the proof.
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Further remarks concerning the functions fi are in Appendix A.

The complexity of the expressions for the elements of P and the

exact form of the fi as given by (A.4) seem to preclude efficient

computation of P on a computer.

Appendix B considers this process with an exogeneous time scale,

rather than that determined by numbers of shots.

/
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II

4

APPENDIX A

Let us consider in more detail the functions f. defined in (40).1

To find the exact form of these functions one must compute

iSr(i) n sr[(O, u)]I for u e rO, 1 - r]. It is evident that

2
TTr , if 0 < u < r(i) - r

Sis n st[(0, u)]]

0 if u > r(i) + r

so that only u e (r(i) - r, r(i) +r) remain to be considered. If one

draws a picture with the upper half of the circle bounding S which

has the equation

(A.1) y = (r(i)
2  x2)1/2

and the circle which is the boundary of Srr(o, a)] and whose equation

is

(A.2) x2 + (y - u) 2 = r 2

he sees that conventional methods of analytic geometry may be used to

evaluate the area of Isr(i) n Sr[(0, u)]I.

Solving (A.1) and (A.2) simultaneously shows that the two curves

intersect atthe points (m1(u), m2(u)), ( - ml(u), m2(u)), where

m l(u) =ir 2 -(r~i )2  2r2 + U )T 1/

(A.3) 2 2 2

m2 (u) =2 47
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Let

2 2
( = (r(i) - X2 ) r(i) < x < r(i)

x2(u ) = u + (r - x 2 ) , r < x < r

B3(u, X) =u - (r2 x2)< <
3 - , r<x<r

Note the implicit dependence of 81 on i.

From (A.3) we see that ml(u)=r when u=(r(i) 2-r ) and that ml(u)<r

for all other r in [r(i)-r, r(i)+r).

Thus for (r(i) 2  r2) 2 < r(i)+r

m1(u) m1(u)

IS(i) f s. C(O, u)ll= f 1(X) dx f 63(u. x) dx
-ml(u) -ml(u)

while for r(i) - r < u < (r(i) - r2)

ml(u) ml(u)

Isv(i) n sr 1(0 u-' = f 2(t x) dx -1 j 8(x) dx
-m1 u) -ml(u)

Using tables of integrals we obtain the following evaluation of

the functions f.

Im
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r r2  ,if 0 < u <_~i

m()2 + u('2 m U r2 2)-
m1() r 1()(r- 1() ,if r(i) -r < u <ri)-r

+ rsi

- rnju) (r(i) 2- m ju) 2

(A. 4) (i2 _1____u

f.i(u) 2Trr(i) 3 2 2i 1 2 2
m (u) (r(i) - m 1 (u) ) ,ifz()-r < <u <r(i)+r

+ r(i) 2 sn-i1U))

- mi(u) 2+ m 1(u) (r 2 m i(u) 2

2 1fm1(u))+ r sfli-n

0 ,if r(i) + r < u < 1 -r
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APPENDIX B

The regrouping model. suggested here is capable of handling random

numbers of shots between repositionings of the defenders. We now give

the theory and computations necessary to make this generalization.

Consider the Markov process (T ) with transition matrix P

n n>1

Let Un be the number of shots on day n ; we assume

A9) Numbers of shots on various days are independent, identically

distributed, bounded, positive, integer-valued random variables,

independent of the positions and lethalities of all shots and of

defender positions.

If we put

Yn = U1 + ".. + Un n > 1

Then S = T is the number of surviving defenders at the end of the

n th day.

(B.1) PROPOSITION. Under the preceding assumptions, (Sn)n> 1 is a

Markov process with initial distribution p given by

p(k)= PIS 1 = ki

(B.2) = 0 cpi) m C(j)P i-(j, k)
izl j=0

and transition matrix Q given by'e0

(B.3) Q(i, j) = cp(m)Pm(i, J)
m=1
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Here cp is the confmon distribution of U1 , U2, ... and 10 is the upper

bound on the number of shots per day.

PROOF. According to the terminology of Feller (1966), (Sn) is sub-
n

ordinated to (Tn) by the distribution c. The proof required here

is a straightforward application the theory derived in Feller (1966). -

Likely candidates for cp would be Poisson and geometric

distributions.

I
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